Graphene-ferroelectric metadevices for nonvolatile memory and reconfigurable logic-gate operations.
نویسندگان
چکیده
Memory metamaterials are artificial media that sustain transformed electromagnetic properties without persistent external stimuli. Previous memory metamaterials were realized with phase-change materials, such as vanadium dioxide or chalcogenide glasses, which exhibit memory behaviour with respect to electrically/optically induced thermal stimuli. However, they require a thermally isolated environment for longer retention or strong optical pump for phase-change. Here we demonstrate electrically programmable nonvolatile memory metadevices realised by the hybridization of graphene, a ferroelectric and meta-atoms/meta-molecules, and extend the concept further to establish reconfigurable logic-gate metadevices. For a memory metadevice having a single electrical input, amplitude, phase and even the polarization multi-states were clearly distinguishable with a retention time of over 10 years at room temperature. Furthermore, logic-gate functionalities were demonstrated with reconfigurable logic-gate metadevices having two electrical inputs, with each connected to separate ferroelectric layers that act as the multi-level controller for the doping level of the sandwiched graphene layer.
منابع مشابه
Recent Progress of Ferroelectric-Gate Field-Effect Transistors and Applications to Nonvolatile Logic and FeNAND Flash Memory
We have investigated ferroelectric-gate field-effect transistors (FeFETs) with Pt/SrBi₂Ta₂O₉/(HfO₂)x(Al₂O₃)1-x (Hf-Al-O) and Pt/SrBi₂Ta₂O₉/HfO₂ gate stacks. The fabricated FeFETs have excellent data retention characteristics: The drain current ratio between the on- and off-states of a FeFET was more than 2 × 10⁶ after 12 days, and the decreasing rate of this ratio was so small that the extrapol...
متن کاملNonvolatile Multi-level Memory and Boolean Logic Gates Based on a Single Memtranstor
Memtranstor that correlates charge and magnetic flux via nonlinear magnetoelectric effects has a great potential in developing next-generation nonvolatile devices. In addition to multilevel nonvolatile memory, we demonstrate here that nonvolatile logic gates such as NOR and NAND can be implemented in a single memtranstor made of the Ni/PMN-PT/Ni heterostructure. After applying two sequent volta...
متن کاملA Robust and Efficient MTJ-based Spintronic IMP Gate for New Logic Circuits and Large-Scale Integration
A novel circuit topology of a spintronic stateful implication (IMP) logic gate based on a spin transfer torqueoperated magnetic tunnel junction (STT-MTJ) is proposed and analyzed. It is demonstrated that the proposed topology reduces the IMP error and also the energy consumption by about 60% as compared to the conventional one. Stateful IMP-based logic uses the nonvolatile memory unit (MTJ devi...
متن کاملHysteresis of electronic transport in graphene transistors.
Graphene field effect transistors commonly comprise graphene flakes lying on SiO(2) surfaces. The gate-voltage dependent conductance shows hysteresis depending on the gate sweeping rate/range. It is shown here that the transistors exhibit two different kinds of hysteresis in their electrical characteristics. Charge transfer causes a positive shift in the gate voltage of the minimum conductance,...
متن کاملModeling and simulation of low power ferroelectric non-volatile memory tunnel field effect transistors using silicon-doped hafnium oxide as gate dielectric
Keywords: HfO 2 Analytical model Surface potential Ferroelectric Nonvolatile memory Fe-TFET a b s t r a c t The implementation and operation of the nonvolatile ferroelectric memory (NVM) tunnel field effect transistors with silicon-doped HfO 2 is proposed and theoretically examined for the first time, showing that ferroelectric nonvolatile tunnel field effect transistor (Fe-TFET) can operate as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nature communications
دوره 7 شماره
صفحات -
تاریخ انتشار 2016